‘Omnipresent’ effects of human impact on England’s landscape revealed by University of Leicester geologists

‘Omnipresent’ signs demonstrating the effects of human impact on England’s landscape have been revealed by researchers from the University of Leicester.

Concrete structures forming a new, human-made rock type; ash particles in the landscape; and plastic debris are just a few of the new materials irreversibly changing England’s landscape and providing evidence of the effects of the Anthropocene, the research suggests.

The research, which is published in the journal Proceedings of the Geologists’ Association, has been conducted by geologists Jan Zalasiewicz, Colin Waters, Mark Williams and Ian Wilkinson at the University of Leicester, working together with zoologist David Aldridge at Cambridge University, as part of a major review of the geological history of England organised by the Geologists’ Association.1

The Anthropocene deposits of England, here regarded as those formed after ∼1950 CE, are now extensive, take various forms, and may be characterized and recognized by a number of stratigraphic signals, such as artificial radionuclides, pesticide residues, microplastics, enhanced fly ash levels, concrete fragments and a novel variety of ‘technofossils’ and neobiotic species. They include the uppermost parts of both ‘natural’ deposits such as the sediment layers formed in lakes and estuaries, and more directly human-made or human-influenced ones such as landfill deposits and the ‘artificial ground’ beneath urban areas and around major constructions. ‘Negative deposits’ include the worked areas of quarries and regions such as the English Fenland, where thick peat deposits have ablated to leave a strongly modified underlying landscape, and extend beneath into the subterranean realm as mine workings, metro systems and boreholes. The production of these is still rapidly increasing and evolving in character, while the early signs of global change, such as warming, sea level rise, and modifications to biotic assemblages, are beginning to further modify the emerging geology of this new phase of Earth history.